Anatomy

The external genitalia
- **Vulva** includes:
 - Mons pubis
 - Labia majora
 - Labia minora
 - Clitoris
 - External urinary meatus
 - Vestibule of the vagina
 - Vaginal orifice + hymen
- Appearance dependant on: age + hormonal status
- **Labia majora** = male scrotum
- **Clitoris** = penis (imp. Sexual stimulation)
- Vestibule contains openings:
 - Urethral meatus
 - Vaginal orifice
 - Skene’s + Bartholin’s ducts
- **Hymen** = thin fold of skin attached around margins of vaginal orifice

The internal genitalia
- Include:
 - Vagina
 - Uterus
 - Fallopian tubes
 - Ovaries
- **Vagina**
 - Muscular tube lined by squamous epithelium
 - H-shaped in cross-section
 - Capable of considerable distension
 - Relations:
 - Anterior: urethra + bladder
 - Posterior: anus, perineal body, rectum, pouch of Douglas + pelvic colon
- **Uterus**
 - Cervix
 - Musculofibrous cylindrical structure
 - Vaginal + supravaginal portion
 - Canal lined by columnar epithelium
 - Ectocervix lined by stratified squamous epithelium
 - External os → vagina
 - Internal os → uterine cavity
 - Isthmus
 - Junctional zone: cervix-corpus uteri
 - Forms lower segment in pregnancy
 - Corpus uteri
 - 3 layers of SMC fibres
 - External – transverse
 - Middle – circular
 - Inner – longitudinal
 - Cavity lined by endometrium
 - Tall columnar epithelium + stromal layers
 - Change with stage of menstrual cycle
- **Supports of the uterus**
 - Direct supports
 - Weak
 - Round ligaments
 - Broad ligaments
 - Pubocervical ligaments
Obstetrics & gynaecology physiology

- Strong
 - Uterosacral ligaments
 - Transverse cervical ligaments
 - Indirect supports – the pelvic floor
 - Levator ani muscles
 - Perineal body
 - Urogenital diaphragm
- Fallopian tubes (oviducts)
 - Thin muscular tubes
 - Lined by ciliated columnar epithelium
 - Consists of 4 sections:
 - Interstitial (intramural)
 - Isthmus
 - Ampulla
 - Infundibulum (fimbriated ends)
- The ovaries
 - Paired almond-shaped organs
 - Surface lies in peritoneal cavity
 - Capsule of dense fibrous tissue (tunica albuginea)
 - Cortex stroma + epithelial cells

Blood supply
- Internal iliac arteries
 - Anterior division
 - Visceral
 - 3x vesical branches (inferior, middle, superior)
 - Uterine arteries
 - Parietal
 - Obturator artery
 - Inferior gluteal artery
 - Posterior division
 - Iliolumbar branch
 - Lateral sacral arteries
 - Inferior gluteal branches
- Ovarian arteries
 - From aorta (below renal a.)
 - Rich anastomosis with uterine vessels

Pelvic lymphatic system
- Follow blood vessels
- Inguinal (superficial + deep) nodes drain:
 - Lower vagina
 - Vulva
 - Perineum
 - Anus
- Iliac nodes drain:
 - Cervix
 - Lower part of uterus
 - Upper vagina
- Aortic nodes drain:
 - Uterine fundus
 - Tubes
 - Ovaries
 - Iliac nodes
- Some drainage follows round ligaments → inguinal nodes

Innervation
Obstetrics & gynaecology physiology

- **Somatic innervation**
 - Pudendal nerve – S2, 3, 4
- **Autonomic innervation**
 - Sympathetic outflow – T10-L2
 - Parasympathetic outflow – T11-S3
- **Pain fibres** – T11-S3

Perineum
- **Anterior triangle** – urogenital triangle
 - Includes passage of urethra
- **Posterior triangle**
 - Includes – anus, anal sphincters, perineal body
Ooogenesis

- Primordial germ cells appear in the yolk sac
 - 1st identified 4th week
 - Migrate: dorsal mesentry (developing gut) → genital ridge (44-48d)
 - Genital tubercle → sex cords → cortex of ovary
- @ 20wks – 7 million oogonia
- Falls to 1 million by birth
- Falls to 0.5 million by puberty
- Chromosome number of gametes half of normal cells (haploid)
 - Tetrad = group of 4 homologous chromosomes formed at end of meiosis 1 prophase (before metaphase)
- 1^o oocyte remains in suspended prophase
 - Meiosis resumed as dominant follicle triggered by LH → ovulation (anaphase)
 - 2^o oocyte = small cell formed at the end of meiosis 1, almost all nucleus, aka 1st polar body
 - 2nd polar body = secondary oocyte formed at the end of meiosis 2
- 2nd meiotic division occurs as ovum enters tube

Follicular development in the ovary

- Most ova never reach advanced maturity
- Aggregation of stromal cells (mesenchymal) around follicles → thecal cells
 - Differentiate → form 2 layers: theca interna + externa
- Innermost layers of granulosa cells adhere to ovum → corona radiata
 - Granulosa cells = oogonia in the cortex of the ovary surrounded by follicular cells
 - Zona pellucida = clear layer of gelatinous material collects around ovum
- Ovulation → corpus luteum
 - Theca interna cells undergo luteniation → full of yellow carotenoid material
 - Degenerates 7d post-ovulation UNLESS implantation occurs
 - Increased vacuolisation of granulosa cells
 - Increased amount of fibrous tissue at centre
 - Finally → corpus albicans (white scar)

Hormonal events & ovulation

- GnRH → FSH + LH secretion
 - Made in: median eminence of hypothalamus
Obstetrics & gynaecology physiology

- Decapeptide
- Episodic fluctuations
- No relationship that surges → LH release BUT it is needed for oestrogen-induced LH surge
 - LH, FSH, PL all made in anterior pituitary gland (adenohypophysis)
 - FSH → follicular growth (exclusive to granulosa cells)
 - FSH → LH receptor development (in theca + granulosa cells)
 - LH stimulates + sustains corpus luteum development
 - PL → direct effect on follicle, initiation + maintenance of luteinisation + LT receptor development
 - Follicles → oestrogen producing
 - Corpus luteum → progesterone producing

The endometrial cycle

- 1. Menstrual phase = shedding of functional layers of endometrium (day 1-4)
 - Zona compacta = surface layer covered by compact layer of epithelium
 - Zona spongiosa = endometrial glands lined by columnar epithelium + loose stroma
 - (Zona basalis not shed – thin layer of compact stroma interdigitating with myometrium, little change w/ hormones)
 - Segmental vasoconstriction of spiral arterioles → necrosis + shedding
 - 2^ to fall in oestrogen + progesterone
- 2. Phase of repair = Day 4-7 cycle
 - Formation of new capillary bed (from arterial coils)
 - Regeneration of epithelial surface (zona compacta)
- 3. Follicular/proliferative phase = maximum period of growth of endometrial glands (day 7-ovulation)
 - Elongation + expansion of glands
 - Stromal development
- 4. Ovulation – day 14
- 5. Luteal phase = ‘saw toothed’ (convoluted) endometrial glands, pseudodecidual reaction in stroma
 - Ovulation-day 28
 - Basal vacuolation → visible intracellular secretion by day 20
 - Secretion inspissated
 - Infiltration of stroma w/ leukocytes within 2d of bleeding
 - Entrapped ovulation
 - AKA LUF – luteinized unruptured follicle syndrome
 - Luteinization of follicle without ovulation
 - Normal progesterone production & apparent menstrual cycle

Spermatogenesis

- Full maturation takes 64d in testis
- FSH → spermatogenesis
- LH → stimulation of Leydig cells → testosterone production
- 1N spermatids → mature sperm
Structure of spermatozoon
- Head covered by acrosomal cap (lysins)
 - Flatteened, ovoid shape
- Neck
 - 2x centrioles
- Body – helix of mitochondria (powerhouse of motility)
- Tail – 2x longitudinal contractile fibres + 9x pairs of fibres (form single filament)

Seminal plasma
- Originates from prostate, seminal vesicles, bulbourethral glands
- High conc of fructorse → energy for sperm motility
- High concentration of PG

Sperm transport
- Rapid migration (6mm/min) → receptive cervical mucosa
- Motile sperm reach fimbriated ends of tubes

Capacitation
- Final sperm maturation (in passage through tube) → allows penetration of ZP
- Inhibitory substances produced in caudo-epididymis + seminal plasma

Fertilisation – see notes in SUGER
- Small number of sperm → oocyte
- Adherence of sperm → acrosome reaction = loss of plasma membrane over acrosomal cap
- Sperm head fuses with oocyte plasma membrane
- Sperm head + midpiece engulfed into oocyte
- Fusion of male + female chromosomes = syngamy
- 36 hours post fertilisation → morula = 16-cells become solid ball
- Blastocyst = fluid filled cavity develops within the morula
- 6d post fertilisation → implantation = embryonic pole of blastocyst attaches itself to endometrium
- Decidual reaction = endometrial cells destroyed by cytotrophoblasts & cells incorporated by fusion & phagocytosis into trophoblast. Endometrial stromal cells become large & pale

Physiology of coitus
- Compression of venous channels → penile erection
 - Mediated by parasympathetic plexus (S2, 3)
- Plateau phase
 - Penis engorged, testis bigger
 - Scrotum + testis elevated
 - Bulbourethral gland secretion → clear fluid at urethral meatus
 - Systemic: increased sketeal m. tension, hyperventilation, tachycardia
- Impotence
 - Drugs (over 200!)
 - Recreational drugs
 - Neurological problems
 - Spina bifida
 - MS
 - Diabetic neuropathy
- Ejaculation mediated by contraction of bulbo- and ischiocavernosus
 - Sympathetic nervous system
 - Expulsion by SMC contraction in seminal vesicles, ejaculatory ducts + prostate
- Female excitation → nipple + clitoral erection
- Lubrication comes from vaginal transudation, Bartholin’s glands secretions
- Orgasm → clitoral retraction + contraction of pelvic floor muscles
Obstetrics & gynaecology physiology

Physiological changes in pregnancy

Primigravidae = first pregnancy
Multigravidae

Maternal weight gain
- Water retention – increase up to 8.5L
 - Laxity of joints (pelvic ligaments, pubic symphysis)
- Maybe no wt gain in first 12wks: morning sickness, loss of appetite
- Normal values:
 - <18wks: 0.3kg/week
 - 18-28wks: 0.45kg/week
 - >28wks: 0.4kg/week
- Primigravidae > multigravidae
- Acute excessive weight gain – risk of pre-eclampsia
- Pregnancy is an anabolic state
- Increased fat storage in 2nd trimester: back, upper thighs, buttocks, abdominal wall
- Delivery loss = 6kg

Initiation of lactation
- Hypertrophy of sebaceous glands in nipple areola = Montgomery’s tubercles
- Progesterone + prolactin → alveolar growth in oestrogen primed breast
- Sudden decrease in oestrogen + progesterone at delivery
 - Release of inhibition of prolactin → milk production at in alveolar cells → lactiferous sinuses
- Prolactin production increased by nipple stimulation
- Milk expulsion reflex stimulated by: suckling + release of oxytocin (posterior pituitary from supraoptic + paraventricular nuclei of hypothalamus)
 - Band-like myoepithelial cells surrounding milk-secreting alveoli are oxytocin sensitive
 - Also activated by
 - Seeing infant
 - Hearing it cry
 - Thinking about feeding!
- Milk production inhibited
 - DA agonist
 - Catecholamines
 - Adverse emotional/environmental factors
- Full milk flow @ day 5
 - Gradual increase over next 3wks
 - Colostrum = thick, glossy, protein-rich fluid expressed from breast first 30hrs postpartum
 - DA agonist (bromocriptine) stops PL release – inhibits milk production

Changes in the cervix – ‘cervical ripening’
- 1st function: retain the conceptus = embryo in the womb
- Increased vascularity
- Reduction in collagen (1/3 prior to pregnancy)
- Accumulation of GAGs and water
- Hypertrophy of cervical glands
 - Appearance of cervical erosion
 - Increased mucous secretions → antibacterial plug of mucous in cervix
 - + Fall in vaginal pH 2 to lactobacilli (Doderlein’s bacilli) breaking down glycogen → lactic acid
- Uterine isthmus develops by regular contractions → thinning & stretching → lower uterine segment
 - Extension to birth canal
 - Minimal aid to foetal expulsion
 - Choice for incision for caesarean delivery
 - Avascularity
 - Quiescence in puerperium
- Uterus changes shape from pear → globular
Vascular changes in the pregnant uterus

- Hypertrophy of uterine vessels
 - Non-pregnant: almost all by uterine arteries
 - Pregnant: up to 20-30% by ovarian a.
 - Small contribution: superior vesical a.
- Uterine blood flow from 50-500 ml/min 10 weeks to term
- Trophoblast invasion of spiral arterioles up to 24wks
 - Effect to turn spiral arterioles ➔ flaccid sinusoidal channels
 - Failure: feature of pre-eclampsia + IUGR
 - Vessels sensitive to vasoactive stimuli
- 100-150 spiral arterioles supply ➔ intervillous space
 - 2/3 arising from each radial artery
- One spiral arteriole per placental cotyledon
- Cervix vessels: cholinergic
- Adrenergic nerves in cervical + uterine vessels

Uterine contractility

- Myometrium functions as a syncytium = contractions pass through gap junctions linking cells, produces coordinated waves of contractions
- Pregnant myometrium compliance>non-pregnant (greater distension)
 - Changes in connective tissue mean no increase in intrauterine pressure
- Suppressed by progesterone
 - Increased resting membrane potential
 - Impaired conduction
 - Progesterone antagonists (mifepristone) ➔ induce labour
- Contractions by 7wks – frequent, low intensity
- Late pregnancy contractions – stronger, more frequent
 - 2nd trimester – stronger, low freq
 - 3rd trimester – stronger, freq
- Braxton Hick’s contractions = contractions during pregnancy, Tightening feeling.
- Labour contractions ➔ cervical dilatation
- Ferguson’s reflex = stretching of the cervix & upper vagina ➔ oxytocin release
 - Afferent: cervix ➔ hypothalamus

Changes in the skin

- Increased pituitary MSH secretion
 - Facial pigmentation – chloasma
 - Pigmentation of nipple areola
 - Linea nigra (pigmented linea alba) on lower abdominal wall
- Striae gravidarum
 - Primigravidarae – purplish
 - Silverish in other pregnancies
 - Disruption of collagen fibres in subcuticular zone ➔ stomach, thighs, breasts
 - Increased production of adrenocortical hormones + increases tension in abdomen.

Cardiac output

- Heart displaced by foetus & is larger to accommodate increased volume
 - Valve rings stretched ➔ more common regurgitant flow
 - Longer myocardial fibres ➔ positive inotropic effect
- 40% increase in 1st trimester
 - Likely to ppt HF in women with HD
- Further increase of up to 2 L/min in labour
 - Elevated for 24hrs post + decreases after 2wks
- Decrease in late pregnancy: supine position ➔ uterus impedes venous return by compressing IVC
- 15% increment with twin pregnancy
- Heart rate increased by 15 bpm (N.B. lady's with pacemakers rely on SV alone)
• Stroke volume increase: 64 → 71ml
• BP decreases by 10%. Measurements must be taken in same position each time with correct sized cuff.
 o Supine hypotension syndrome = profound decrease when mother supine due to compression of IVC
 ▪ Aorta also compressed: different brachial + femoral BP
• TPR decreases as CO increases
 o Expansion of vascular space in utero-placental bed + renal vasculature
 o Skin vasodilation

Nutrients in blood
• Increased tendency to clotting in pregnancy + the puerperium
• Glucose is major substrate for foetus (insulin controlled via maternal BM)
 o Foetal blood glucose levels 20% lower than maternal
• Albumin falls during pregnancy
• Globulin rises (10%)
• AA decrease except alanine + glutamic acid
• Pregnancy → hyperlipidaemic state (TG, cholesterol, phospholipids)
• FFA elevated
• Fat-soluble vitamins increased conc, water soluble decreased

Immunological responses
• Uterus not immunologically privileged as other tissues implanted in uterus → rejected
• Trophoblasts do NOT elicit allogenic responses
• Foetus has non-immunogenic interface with maternal circulation
• Filters out harmful antibodies in the placenta
• Maternal immune response is locally manipulated
• Thymus involutes in pregnancy
• Splenomegaly - ?increased production of Ig producing cells
• LN draining uterus (para-aortic chain) enlarge

Urinary system changes
• Renal enlargement (cell size) 70% by 3rd trimester (physiological)
 o GFR increases by 50% by 16wks, decreases 26-36wks
 o Glycosuria
 o Change in PCT reabsorption
 o Increased renal blood flow
 o Increased effective renal plasma flow
 o Decreased serum Cr + urea
 o Decreased uric acid clearance
• 2.5 fold increase in plasma renin activity (+ prorenin) BUT reduced vascular sensitivity to AT2
 o Pre-eclampsia – sensitivity increases prior to HTN onset
• Ureteric and pelviccalceal dilatation (90%)
• Vesico-ureteric reflux (30%)
• Both above → increases urinary stasis → UTIs

GI changes
• Increased intra-abdominal pressure + decreased LOS response → reflux oesophagitis (heartburn)
• Delayed gastric emptying
• Tendency to constipate (more water absorbed in LI)

Endocrine changes
• Pituitary glands enlarge
• Increase prolactin secretion
 o Oestrogen → increase number + secretory activity of lactotrophs → PL increase
• Placenta → CRH + ACTH
• Suppression of: GH, LH, FSH
• Oxytocin receptors increased in uterus + increased sensitivity
 o Related to oestrogen:progesterone ratio
Obstetrics & gynaecology physiology

- Function: stimulates uterine contraction, breast feeding role
 - Thyroid function increases
 - Increased TRH ?placental source as well as hypothalamic
 - Aldosterone + deoxycorticosterone levels increase in pregnancy
Early placental development

- Fertilisation → morula → blastocyst → implantation → syncytium formation → decidual reaction
- Trophoblastic cells invade spiral arteries within first 10wks
- Implantation of the blastocyst occurs by day 7
- Cords of cytotrophoblasts/Langhans cells → primary placental villi formation (d7)
 - Functional unit of placenta
 - Grow into basal layers of decidua → penetrate endometrial venules + capillaries
 - Form lacunae (filled with maternal blood) = intervillous space
 - 1º villi branch → 2º → 3º free floating villi
 - Central core of villi → capillary network of villi
 - Body stalk attaching foetus to placenta → umbilical vessels
- Chorion frondosum = branched and thickened area that develops into the placenta
- Chorion laeve = forms outer layer of foetal membrane. Villi atrophy → smooth surface
- Decidua basalis = decidua under the placenta
- Decidua capsularis = decidua between membranes & myometrium

Further placental development

- Total SA chorionic villi in mature placenta 11m²
 - Increased by microvilli on foetal side & villi
- Maternal cotyledons form by 6 weeks after ovulation
 - ~ Free floating 2º and 3º capillaries pushed into tent-shapes by maternal blood
 - ~12 large, 40-50 smaller

Umbilical cord structure

- 2x arteries (deoxy from foetus) + umbilical vein (oxy to foetus)
 - Helical shape
 - Absorbs torsion .'. protects patency of vessels
 - No risk kinking/snaring vessels
 - Arterial pressure late pregnancy: 70/60mmHg
 - Low pulse pressure
 - Very high venous pressure: 25mmHg
 - Pressure in villus capillaries>cord venous pressures
 - Foetal pressures>choriodecidual
 - Foetal blood cells enter maternal circulation BUT rarely other way around
- Surrounded by Wharton's jelly = hydrophilic mucopolysaccharide
- Covered by amniotic epithelium
- 30-90cm long

Uteroplacental blood flow

- Some SMC destroyed by trophoblastic invasion of spiral arteries → flaccid dilated
- Mean pressure at term: 10 mmHg + high flow
- Mean flow at term: 500-750 ml/min
- Regulating factors:
 - Anything that affects foetal heart, aorta, umbilical vessels & chorionic villi
 - Can be impaired by haemorrhage, uterine contractions, adrenaline, noradrenaline
 - AT2: vasodilator, vasoconstrictor (high conc)
- Impairment → foetal growth impairment
- Acute foetal asphyxia
 - Supine position in late pregnancy → compression of IVC
Obstetrics & gynaecology physiology

- Sudden reduction in blood flow via uteroplacental bed
- Anaerobic glycolysis activated (uses glycogen reserves)

Placental transfer + function

- **Function**
 - Gaseous exchange by simple diffusion
 - Foetal nutrition/excretion
 - Hormone synthesis

- **Other transport mechanisms**: facilitated diffusion (glucose), active transport (AA, water soluble vits), pinocytosis (globulins, phospholipids)

- Oxygen rapidly taken up by foetal circulation (even at low pressures)
 - Higher affinity for O2
 - Hb conc higher
 - Bohr effect = shift of oxygen concentration curve to R by low pH, PCO2 and temperature; means lower more O2 released from Hb

- Excess glucose stored as glycogen (liver, muscle, placenta, heart) or fat (behind scapulae, around heart)

- Hormones involved in glucose control: insulin, GH, glucagon and human placental lactogen (can’t cross placenta)

- Immunoglobulins made by foetal lymphoid tissue (20wks)
 - IgM first → IgA → IgG
 - Selective placental transfer of IgG

- Ammonia transfers across placenta → foetal nitrogen source

Endocrine function

- **hCG** *(human chorionic gonadotrophin)* – peaks between 10-12wks gestation
 - Trophblast produces it
 - Similar structure to LH
 - Function: maintains corpus luteum until placenta takes over prog production
 - Used in pregnancy tests (97% urine positive by 2wks) – *agglutination inhibitin techniques*

- **hPL** *(human placental lactogen)* AKA chorionic somato-mammotrophin
 - Synciotrophoblast produces it
 - Similar structure to GH
 - Levels increase during pregnancy
 - Function: lower BM, increase FFA and insulin
 - Low in placental failure
 - Tested by *immunoassay*

- **Progesterone** – placenta produces about 350mg/day at term
 - Placenta takes over corpus luteum at 17th week
 - Dependent on maternal cholesterol
 - Renal + hepatic metabolism → urinary excretion (pregnanediol)

- **Oestrogens** – placenta major source, 20 diff hormones
 - Major ones: oestrome, oestradiol-17B and oestril
 - Urinary excretion
 - Sources: foetal adrenal gland (DHEA), syncytiotrophoblast and ovaries (minimal)

Foetal development

- Rate of foetal growth increases after 10 weeks (diminishes towards term)

- Final weight ~3.5 kg
 - FFA stored as brown fat: around neck, behind scapulae, behind sternum and around kidneys
 - White fat: SC fat covering body

- **12 weeks**
 - Translucent skin. No SC, vessels visible on skin!
 - Reacts to stimuli
 - Upper limbs at final relative length

- **16 weeks**
 - Crown-rump: 122mm
 - Lower limbs at final relative length
Obstetrics & gynaecology physiology

- External genitalia can be differentiated
 - 24 weeks
 - Crown-rump: 210mm
 - Separated eyelids, skin opaque & wrinkles (no SC fat)
 - Fine hair covering body
 - 28 weeks
 - Eyes open
 - Scalp growing hair
- CVS
 - Single tube + heartbeat 4-5wks
 - Definitive circulation 11wks, HR 140bpm
 - Cardiac output at term – 200ml/min/kg (entirely dependent on HR)
 - Entirely dependent on HR, under ANS control (matures in 3rd trimester)
 - Ductus venosus + ductus arteriosus
- Respiratory system
 - Resp movements 12wks
 - Regular respiratory pattern – mid-trimester. Shallow breaths only into bronchioles.
 - Hypoxia – gasping leads to inhalation of amniotic fluid deeper into alveoli. Often meconium stained.
 - 40-60 movements/min – 34wks
 - Increased by: hypercapnia, maternal hyperglycaemia
 - Decreased: hypoxia, maternal smoking
 - Foetal apnoea increases towards term (up to 120mins!!)
 - Principal surfactants: lecithin + sphingomyelin
 - Lecithin production reaches functional levels – 32wks
 - Measurement in amniotic fluid = indication of foetal lung maturity
 - Surfactant production maybe delayed in maternal diabetes – administer corticosteroids to mother
- GIT
 - Mucosal glands – 16-20wks
 - Most digestive enzymes present – 26wks
 - Amylase activity – neonatal period
 - Peristaltic movement (initiated by amniotic fluid swallowing) – mid pregnancy
 - Digestion of this → meconium = foetal faeces formed by digestion of protein + cells in amniotic fluid
 - Only present in fluid if foetal stress/asphyxia
- Kidney
 - Filtration starts (functional renal corpuscles present) – 22wks
 - Foetal kidney completely formed – 36wks
 - Most excretory functions performed by placenta
- Special senses
 - USS ear – 10wks
 - Middle ear + 3 ossicles – 18wks
 - Inner ear – 24wks
 - Perception of sound – 16-24wks

Amniotic fluid
- Develops from inner cell mass of blastocyst
- Formed by secretion & transudation of fluid through amnion & foetal skin and from the passage of foetal urine → amniotic sac
- Foetal urine – major contributor!!
- Total volume turned over every 2-3hours
 - Reabsorption via foetal gut, skin & amnion
- Oligohydramnios - minimal amniotic fluid (impaired secretion)
 - Assc. with intrauterine growth impairment + congenital abnormalities (e.g. renal agenesis)
 - May cause:
 - Pulmonary hypoplasia
Obstetrics & gynaecology physiology

- Club foot
- Skull deformity
- Wry neck
- Foetal hypoxia in labour

• **Polyhydramnios** - excessive amniotic fluid (impaired absorption)
 - **Acute polyhydramnios** (rare)
 - 2nd trimester/early 3rd
 - Painful for mother – dyspnoea + vomiting
 - Acute distension of uterus – relieve by amniocentesis (ST relief)
 - Premature onset labour
 - **Chronic polyhydramnios**
 - Maybe assoc. with large placenta (multiple pregnancy, diabetes) or congenital abnormality e.g. (in order of freq)
 - Anencephaly
 - Oesophageal atresia
 - Duodenal atresia
 - Iniencephaly
 - Hydrocephaly
 - Diaphragmatic hernia
 - May cause:
 - Unstable lie
 - Cord prolapse
 - Placental abruption (if sudden release of amniotic fluid)
 - Postpartum haemorrhage (assoc. w/ overdistended uterus)
 - Maternal discomfort + dyspnoea

Clinical tests

- **Amniocentesis (15-16wks)**
 - Indications
 - Prenatal neural tube defect
 - Chromosomal abnormalities + sex-linked diseases
 - Metabolic disorders
 - Rhesus isoimmunisation (foetal anaemia cause: spectrophotometry)
 - Estimation of lung foetal maturity (if prem delivery likely)
 - Detects foetal sex
 - 2 types of cells in fluid:
 - Foetal – larger, anucleate
 - Amnion – smaller, prominent nucleolus contained within vesicular nucleus, stain well with eosin
 - Nile blue staining maturing sebaceous cells
Stillbirth = child born after 24 weeks of gestation & didn’t breathe or show any signs of life post-expulsion from mother
Neonatal death = death of live born infant within 28d of birth
Early neonatal death = death during 1st week of life (0-6d)
Perinatal death = foetal death after 24 weeks gestation & death before 6 completed days (early neonatal deaths + stillbirths)

Low birth weight = live birth <2500g

Perinatal mortality

- UK stillbirth rate 2001 5.3/1000
- Neonatal death rate 3.5/1000
 - Decrease 2º to:
 - Improved antenatal + intrapartum care
 - Improved socioeconomic conditions
 - Reduced parity
 - Active screening for common congenital abnormalities (Down’s) + neural tube defects
- Perinatal mortality rate 7.8/1000
 - Factors affecting this:
 - Social class
 - Country of birth of mother
 - Maternal age
 - Parity
 - Marital status
 - Smoking

Aetiology

- Stillbirths
 - 70% uncertain
 - 12.5% congenital abnormalities
 - 9.5% intrapartum stillbirths
 - 2% infections
- Neonatal deaths
 - 50.3% immaturity
 - Respiratory distress syndrome + hyaline membrane disease
 - Pneumonia
 - Intracranial haemorrhage + cerebral damage in labour/delivery/early neonatal period
 - Necrotising enterocolitis
 - 24.5% congenital malformations
 - 8% intrapartum factors
 - 6.9% infections

Maternal mortality

- Confidential enquiry 1997-99:
 - Indirect obstetric causes>direct
 - Direct obstetric death = obstetric complications of the pregnant state (pregnancy, labour, puerperium) from interventions, omissions or incorrect tx or from chain of events from above
 - Indirect obstetric death = previous existing disease/one that developed during pregnancy aggravated by physiological effects of pregnancy

Commonest cause of direct mortalities

- Thromboembolism
- Pre-eclampsia
- Uterine haemorrhage
- Amniotic fluid embolism
- Infection (sepsis, excluding abortion)
Commonest indirect causes
 • Cardiac disease
 • Suicide (& other psychiatric causes)
 • Cancer